The Science of Exobiology

Space rocks

So you want to introduce a new lifeform in your fiction. There are many reasons to do so. A sentient humanoid can provoke your reader’s sympathy and relatability, while a vile, brainless, and flesh-eating slug can put your readers on edge. If done sloppily, however, skeptical readers will find the flaws in such a creature, and that disbelief will undermine any of your attempts to draw them into the story. You can blame biologists for always taking the fun out of your unique imagination, or you can choose to awe them with the many ways you manipulate biology into something terrifying or beautiful. After all, there are millions of weird and wonderful species on our own planet, some far more alien looking than what sci-fi authors have conjured up over the years.

anemone

“Fish and anemone,” picture by Philip Kramer at the Seattle Aquarium

Here are the things you should consider when making a new species:

 

What is life anyway?

To breathe life into your creation, you should first understand what life is. The standard definition of life is an entity that can grow, reproduce, undergo metabolic processes, and sense and interact with the environment. This simplistic definition has led to some interesting debates. A virus for example, can do little to none of these things outside a host cell. Is it a living thing? Crystals too can take in energy and materials from their environment and use it to grow and reproduce. Is a crystal alive? Alien life will also likely defy some of these rules.

So what might life on another planet look like? This field of study is referred to as exobiology and astrobiology.

 

All life is a product of its environment.

Everything about life, down to each protein or strand of DNA, was selected for over the course of millions of years. If an organism died before passing on its genetic material, the next generation would not inherit those characteristics that lead to premature death. This is evolution, and because of it, nearly everything about you has a purpose and function.

True, there are some things that appear to have no function except to give scientists headaches. These things exist because they can, or because they did not provide an evolutionary disadvantage. For example, many of the glycoproteins coating each of our red blood cells have no apparent function. Others, like the Duffy antigen, are used by the malaria parasite to infect cells. As a result, many individuals whose ancestors were from malaria-prone regions do not express this antigen. The simple rule is this: evolution will select against adaptations that negatively affect a species’ chances of survival and procreation, but any adaptations that improve those chances, or don’t change them at all, will persist.

On Earth alone, evolution progressed down millions of branches depending on environmental pressures. Many of those branches ended when these evolutionary experiments failed or the creature was overpowered by another creature attempting to take over the same ecological niche. As humans, we adapted our opposable thumbs from grasping tree limbs to avoid predators on the ground and reach food high in the canopy. We became bipedal to facilitate running and giving us a height advantage to spot both predators and prey when traveling across the ground. When intelligence improved our ability to hunt and forage, we dedicated much more room and energy to developing it. For other animals, they took to the air, or stayed in the water, and evolved talons, teeth, and scales to defend themselves. Any change to the fictional environment would make your creatures change accordingly. If the atmosphere was just a little thicker, for example, like the one on Venus, instead of birds with wings, you might have puffer-fish like creatures that fill an air-bladder with hydrogen or oxygen to float around. If your creature lives in dark caves like Astyanax mexicanus, a Mexican cave fish, they will probably have no eyes, or at least not ones that function.

 

Familiar or strange?

Going out of your way to creating an entirely original and strange lifeform may not be necessary. In fact, some scientists think life can only come in a finite number of forms. So it is possible that alien lifeforms share characteristics with us or other life on our planet. Darwin’s Aliens, is a new theory suggesting that there are only a handful of ways biology can evolve to deal with its surroundings. Yes, even biology is beholden to the laws of physics. Take the eyes as an example; there are only a few ways a creature might focus light from its environment onto a cluster of light sensitive cells. Evidence suggests that eyes evolved independently on dozens of evolutionary branches on Earth into something that looks and operates very similarly. The number and placement of those eyes on the head are also no coincidence, allowing a large range of vision without taking up too much space and energy in the brain to process that information.

Just because alien life might look familiar, doesn’t mean it can’t be strange. You can still be creative with your alien. In fact, it is very unlikely aliens will look too similar or identical to life on Earth. Since we exist because of a series of random genetic mutations and environmental coincidences (like ice ages and the particular tilt of our planet caused by the moon), it is very unlikely a species from another planet will have experienced the same evolutionary history.

Designing your lifeform.

The simplest unit of life as we know it is the cell. Alien life will most likely be composed of cells too, as it is the natural progression of simple to complex life, and allows each unit to carry the genetic information required for it to grow and replicate. Your alien can be a single cell, or a complex lifeform composed of two or more of these units working together for mutual survival. This partnership also allows some cells to specialize in certain tasks (defense, digestion, locomotion, etc.) to make tissues and organ systems.

Here are some of the features and organ systems most complex life should have:
Size- No matter the planet, there will be gravity, so your lifeform’s proportions will likely adhere to the square-cube law. This law, while by no means strict, describes most of the complex terrestrial life on Earth. In simple terms, it describes the relationship between volume and surface area of a creature. As a creature grows in size, its surface area does not increase at the same rate as its volume. As a result, larger animals must have thicker limbs to support a greater mass, a circulatory system to deliver nutrients and gasses through its body, and methods to dissipate heat through its lower relative surface area. Increasing an insect to the size of a cow would make its exoskeleton heavy, and its spindly limbs unable to support the mass of its bulbous body. Additionally, it could no longer rely on it tracheoles and hemolymph to diffuse oxygen throughout its body.

bug

“Pillbug,” by Philip Kramer, (edit of picture)

Skin- Often the largest organ in the body, it is the last barrier between living flesh and a harsh environment with no regard for living things. Making a sentient slime the primary host of a hot, water-poor planet like Venus would not only be impractical, but evolutionarily impossible. A type of lizard with scales that reflect infrared and are resistant to sulfuric acid rain, however, would be far more likely. If the planet is cold instead, fat deposits or thick fur will serve as good insulation.

In addition to a physical barrier, the skin can also serve as an optical defense or lure. Lizards, butterflies, encephalapods, and many other creatures disguise themselves with their surroundings, make themselves look menacing, or lure in other creatures by appearing to be harmless.

 

fleattle

“The Fleatle,” by Ian Dowsett

Skeleton and muscles- In some cases, the skeleton can take place of the skin. This is known as an exoskeleton. While it can provide protection from the external world, it is not very deformable, and weighs too much on large creatures. Additionally, such a skeleton would limit growth, and occasional periods of molting would make the creature vulnerable to injury. An internal skeleton provides more joint versatility, structural support, and anchorage for ligaments and tendons. Add muscles, and the creature will be able to move through and manipulate the environment around them. The means of locomotion will vary depending on its evolutionary environment, allowing for wings, fins, tentacles, or feet and hands. The type and position of joints is going to alter the function of the limb. For example, the elbow and knee are terribly weak joints (the fulcrum near the end of lever), meaning it takes a large amount of force to move the limb. Why would evolution do this? While the arms and legs are weak, their length away from the pivot point means they can move at incredible speeds, ideal for running, climbing, and throwing things. By contrast, relatively small muscles in joints used for crushing and raw strength, like the jaw, can allow bite pressures of over a thousand pounds per square inch in the hippopotamus, alligator, and hyena.

Tim's alien

“Gra’Sugra” conceptualized by Tim Kramer, illustrated by Joseph Martin

Brain- The nervous system, a means by which creatures control their limbs and the movement and function of other organs, can be simple or complex. For complex creatures, they come in two major types: centralized and decentralized. A central nervous system, like our brain and spinal cord, control all peripheral communications. A decentralized nervous system, like the octopus, has multiple little brains that can act independently of one another, or coordinate with each other without sacrificing intelligence. If your human explores encounter an alien starship, chances are the alien creature will have a complex nervous system, for how else would they have constructed such advanced technology.

ForC

Centralized nervous system- “ForC” by Ian Dowsett

 

Drude

Decentralized nervous system-“Drude” by Ian Dowsett

 

Metabolism and digestion- Biology is a huge source of entropy, bringing far more chaos into the universe than order. Life gets its energy by breaking existing molecular bonds and using that energy to create new ones. But we break far more bonds than we form. As humans, we must consume dozens of tons of food over the course of our lifetimes just to maintain our relatively unchanged size and shape, and perform comparatively low-energy functions.

The source of molecular energy a lifeform uses can vary. On Earth, most life gets its energy from breaking down simple carbohydrates, fats, or proteins. These in turn were formed by other lifeforms. Chances are the circle of life will come back to plants, who ultimately get their energy from the sun to form carbohydrates. In areas that lack sunlight or are too inhospitable for plant life, ecosystems revolve around other root sources of energy. Deep under the ocean at hydrothermal vents, where temperatures can reach higher than 400 degrees Celsius, the base life form are extremophiles (Archaea) which can use non-organic compounds to synthesize energy in the absence of sunlight. These in turn feed larger crustaceans and nematodes.

Morning Glory

Morning glory pool at Yellowstone. Many colors attributed to extremophiles. Picture by Philip Kramer

It is also possible, that aliens will not find humanity or other forms of life appetizing unless they evolved similarly. We have very specialized enzymes for very specific foods, like glucose (D-glucose, not L-glucose), amino acids (L, not D), and fats. If an alien predator does not utilize these same substrates, we will not taste very good or sit very well with them.

Waste disposal- On that topic, waste disposal is another must for complex organisms. It is impossible to digest, utilize, and recycle 100% of ingested food. At some point, toxins, and metabolic waste will need to be eliminated. Intestine type organs to digest and absorb, a liver to detoxify, and a kidney to filter our liquid waste, are common features of most complex life on Earth. Some creatures, like birds, reptiles, and most fish release both solid and liquid waste and reproduce through a single orifice called the cloaca. The aliens in The Post-Apocalyptic Tourist’s Guide series, have such an orifice, much to the amusement of all the authors in the series.

TPATG alien

Alien from The Post-Apocalyptic Tourist’s Guide series, illustrated by Stephen Lawson. Note: over-emphasized cloaca.

Reproduction- Life is complex, therefore it requires a lot of genetic information to maintain and recreate it. No matter what your alien species, they will have a genetic material (could be DNA, or some silicon-based version of it), and a method of reproduction. It can be an asexual species that creates clone-like copies of themselves like many starfish, or it can reproduce like humans and most other animals with two or more members of the species contributing genetic code.

starfish2“Starfish,” by Philip Kramer, (edit of picture)

Or, like slugs, they can be hermaphroditic, possessing both male and female reproductive organs.

 

slug1

“Seattle slug,” by Philip Kramer (edit of picture)

Circulation and respiration- The need for a way to distribute metabolic substrates and facilitate gaseous exchange is necessary for all large and complex organisms, including plants. The lungs and/or gills would need high surface area to facilitate the transfer of gasses. In smaller creatures, diffusion is sufficient, though rudimentary tracheoles, a heart, and hemolymph are present in many insects. Aside from supporting metabolism, the circulation is an ideal medium to support an internal defense against invading organisms. Most animals have a complex immune system supporting many types of specialized cells. Any alien coming to Earth would not have the adaptive or innate immunity required to repel local microorganisms. We would also have no defense against alien microbes.

Senses- Like locomotion, the senses will be defined by the environmental medium and ecological niche of the creature. Vibrations travel through air far better and faster than they do through a medium with little to no compressibility like stone or water, so many terrestrial creatures will likely have ears. Assuming there is light to see by, aliens will also have a type of eye, though it may see different parts of the spectrum. Tiny hairs, like those on insects, could improve tactile awareness, and receptors for aromatic molecules can provide a sense of smell. Humans have far more than five senses, so there are plenty to choose from to make your aliens as aware or unaware of their surroundings as you want. If, for example, your aliens only see in infrared, your space troops could use a special armor to disguise their heat signature.

Samuel“Samuel,” by Ian Dowsett

Mechanical augmentations- Aliens with a computer driven intelligence or mechanical augmentations are an exception to many of these “rules.” They will need energy, but this can come in many different forms, and they will not need to digest or dispose of waste in the same way. Despite the differences, however, they would have needed an intelligent biological host or a biological predecessor to design them. Seeing as how mechanical lifeforms are far more resilient, they will likely be the first interstellar visitors we encounter.

The tide

“The Tide,” Conceptualized by Tim Kramer, illustrated by Joseph Martin

Conclusion.

Congratulations, you have now made an imaginary lifeform and, ipso facto, you now have imaginary godhood. Don’t let it go to your head. Even a novice biologist will likely be able to undo all your hard work. But you have one thing going for you. Give your creatures all the things required of life, make it beholden to the laws of physics, and a product of its environment, and even those pesky naysayers won’t be able to prove its nonexistence. If you are still having trouble, take a page out our own planet’s ecological history. There are many millions of species with unique features, functions, and evolutionary trees, right here on Earth. With a little bit of research and imagination, we can all be amateur exobiologists.

 

Until next time, write well and science hard.

The science of enclosed ecosystems

billy-and-rubin-ecosystem

Earlier today I did a guest post for fellow blogger, writer, and scientist, Dan Koboldt. I came across his blog about a month ago. He and I share the same mission, to promote the use of accurate science in sci-fi. But rather than do all the background research on his own, he wisely seeks out professionals in related fields and asks them to write about scientific misconceptions in sci-fi and how to get it right. Since my own lab work concerns cellular respiration, I offered to write a post for him on enclosed ecosystems, and he generously agreed. You can see the original post by clicking on the graphic below:

ecosystems-and-life-support-in-scifi

Enclosed ecosystem and life-support systems in sci-fi

A Closed Ecological System (CES) is a broad term that encompass any self-sustaining and closed system in which matter does not leave or enter. These artificial habitats can be built in space, underground, or underwater, but no matter where they are, chances are they are closed for a reason. Whether it is an underground bunker in a post-apocalyptic setting, a distant planet in the early stages of colonization, or a spacecraft carrying the last remnants of humanity, the environment outside is not hospitable. To ensure long-term survival, the occupants must maintain a well-balanced air and water system, a continuous food supply, and a reliable source of energy.

So far, no artificial enclosed ecosystem has successfully supported human life for long periods of time. Even the astronauts on the International Space Station get regular supply runs and have to exchange personnel. The largest CES was Biosphere 2, which sustained 8 crew for 2 years; however, they had to resort to some extreme measures to keep oxygen and carbon dioxide levels in normal ranges, and many of the plant, animal, and insect populations died off.

Creating and maintaining a CES is difficult, as many fluctuations or imbalances can cascade into environmental collapse without continuous monitoring and support. Here I will discuss a few of the misconceptions about Enclosed Ecosystems and Life Support systems and suggest ways to get it right in Sci-fi.

Myth: Waste is useless and should be disposed of.

You see this in many sci-fi stories set in space; the airlock door opens and a stream of garbage is ejected into the vacuum. This might be acceptable for short-term missions, where all the supplies needed are carried along, but for an ecosystem intended to last for a long time, being wasteful is not an option. It is a matter of mass balance. In most situations, it won’t be possible to obtain resources from outside the enclosed system, so if your characters are ejecting waste of any kind out the airlock, soon there won’t be anything left. By the same principle, if some waste product cannot be recycled, it will build up and eventually consume all of the precursor materials.

Getting it right

When creating a life-support system for a fictional crew, they must adhere to a strict recycling policy. Most solids, such as plastics and metals or glass, can be melted and recast into any number of shapes. Of greater importance is the conversion of gaseous, liquid, and solid wastes into breathable air, drinkable water, and edible food. Solid organic wastes such as material from dead plants, animals, or their excrement, contain large amounts of nitrites and nitrates, phosphates, and other inorganic compounds that serve as fertilizer for plants.

Having a ‘living soil’ or cultured hydroponic system is also necessary, as bacteria, like those found in the human gut, are great at breaking down complex organic molecules and making them assessable to the roots of plants. So far, there is no easy way to convert waste, carbon dioxide, and water into an edible food source, outside of a biological system, such as a plant. Such plants can be consumed as food, and the cycle is repeated.

Myth: Water evaporates and condenses, but the total amount doesn’t change.

You hear this often in terms of a large environment like the Earth, where water rises from the oceans and falls again as rain, and it is true for the most part. Only a few processes create or break down water, but in a small, highly balanced environment, they can make a huge difference. Water is made and destroyed in biological systems during condensation reactions and hydrolysis reactions, respectively.

But the most significant of these reactions occurs in the mitochondria, the ‘energy’ producing organelle in nearly every cell. In the mitochondria, oxygen receives 4 electrons from the Electron Transport Chain and is reduced to water. Yes, nearly all of the oxygen you absorb through your lungs is converted into water. The reverse happens in plants, where water is hydrolyzed into oxygen during the construction of carbohydrates during photosynthesis.

Getting it right

The balance between animal and plant life on the ship should ensure a stable supply of water, but water can be made and eliminated artificially if there is ever an imbalance. Electrolysis, breaking water into hydrogen and oxygen, can be accomplished with a little electricity. That processed can be reversed by burning hydrogen in the presence of oxygen. A means of storing oxygen and hydrogen or water should be in place to deal with small fluctuations. Humidity and condensation can cause severe damage to electrical systems, especially in zero gravity, where air currents can become stagnant. This also increases the risk of mold. Cold surfaces or specialized air filters can trap the water vapor and return it to storage.

Myth: Plants convert carbon dioxide into oxygen, while animals do the opposite.

Unfortunately, the biochemistry isn’t so simple. Oxygen is not converted into carbon dioxide in animals. As I already mentioned, nearly all of the oxygen you absorb is converted into water. Carbon dioxide is released from the breaking down of metabolites like sugar, proteins, and fats. This takes place in the mitochondria. In plants, oxygen is made when both carbon dioxide and water are converted into carbohydrates like glucose during photosynthesis. This occurs in the chloroplast in plants.

food-water-and-air-cycles

Another misconception is that producing oxygen is all plants do. In reality, plants have mitochondria too, and they consume oxygen and carbohydrates and produce carbon dioxide and water. When the lights are on, plants tend to produce more oxygen than they consume, but without light, they will suck up the oxygen as hungrily as we do.

Getting it right

Even as little as 1% concentrations of carbon dioxide can cause acute health effects such as fatigue and dizziness, but even higher concentrations (7-10%) can lead to unconsciousness, suffocation, and death within hours. To control fluctuations in carbon dioxide, CO2 scrubbers can be used. However, carbon dioxide is an intermediate step in oxygen and carbon cycles, so this artificial means to lower carbon dioxide may cause downstream effects on plant growth and lower oxygen concentration. This occurred accidentally in Biosphere 2 when carbon dioxide was converted into calcium carbonate in exposed concrete.

Materials like metal oxides and activated carbon can be used in CO2 scrubbers and then the carbon dioxide can be released at a later time. Large variations from the normal 21% oxygen is more easily tolerated than variations in carbon dioxide, but long-term exposure to greater or lower concentrations can lead to many acute and chronic health effects. Adjusting the amount of artificial or natural light available for photosynthesis is an effective means of controlling oxygen concentrations.

Myth: Energy must be produced within the ecosystem.

No closed ecological system is completely enclosed. If it were, it would soon succumb to the laws of entropy, making it a very cold and dark place. Something has to enter the system, and that thing is energy. The energy driving the weather, the currents, and the very life on this planet is coming from the sun.

Getting it right

Most common energy sources:

  • Solar
  • Wind
  • Water
  • Geothermal
  • Gas
  • Fusion/fission

The first four examples are the only types applicable in a completely closed ecological system, since energy can be moved into the system without any exchange of matter. A major drawback, however, is that the habitat can’t leave the source of the energy. A spaceship powered by the sun will have a hard time operating in interstellar space.

Any technology that requires the use of combustible fuels or fissionable (uranium 235 or plutonium 239) or fusible (Hydrogen 2 and 3, deuterium and tritium, and helium) materials will have to be resupplied on a regular basis, so they are not suited for long term ecosystems. By nature of their bi-products, they cannot be reused for more energy, but they have the benefit of being disposable and can be used as a form of thrust in spaceships without upsetting the mass balance.

Other Considerations for Environmental Control and Life Support.

Ecosphere.jpg

My year old Ecosphere. Going strong except for a slight algae overgrowth (The lab decided to keep lights on around the clock this past month).

Size- Closed ecological systems can come in all shapes and sizes, but the larger the better. Larger ecosystems, like the Earth, can sustain much more life and complexity and take longer to collapse if poorly maintained.

Nutrition- The nutritional demands of a human are more than getting the right amount of calories. There are many essential trace elements, minerals, amino acids (9 of them), and fatty acids (omega 3 and omega 6) and nearly everything that is classified as a vitamin, that cannot be synthesized by the human body. Until these things can be synthesized by machines, a complex ecosystem of many different plant and animal life forms would be required to maintain optimum human health.

Temperature regulation- Heat will build up rapidly in most enclosed systems, even in the cold of space, especially when you have heat generating electronics around. Heat needs to be dumped back into space as thermal radiation, usually a high surface area radiator that circulates a fluid capable of picking up heat in the interior and then dispensing with it outside. The opposite may be true in the deep ocean or underground, where heat may be drawn out of the enclosed system, and insulation will be necessary.

Air circulation- This is particularly important in zero G space, where hot and cold air will no longer rise and fall, respectively. To prevent air stagnation, humidity fluctuation and condensation, air needs to be well circulated. Filters are also necessary to remove any particulate matter such as skin cells or microbes.

The human element- Most enclosed ecosystems designed to support human life have not lasted nearly as long as they were intended to. Why? Because they failed to factor the human element into the equation. People get lonely and fall in love, personalities clash and people fight. Close quarters and a limited food supply can cause even the most patient and respectful of people to lose their temper. In Biosphere 2, the eight crew were barely on speaking terms by the time they exited, and two of them got married soon after.

The science of magic

magic and scienceI have a secret to confess: 90% of the books I read are fantasy. I can hear it now: “But you always stress the importance of scientific accuracy. Magic isn’t real.”
I know, I know, but I still hold fantasy to the same standards as sci-fi. While magic will never be scientifically plausible, it must still operate logically, with rules and limitations. The only difference between these genres is that the author defines the laws, not a scientist. But once defined, those laws should not be broken. Magic without limitations is just as bothersome to me as inaccurately portrayed science. A wizard who can make an obstacle disappear with a wave of his wand is no different than a star-ship captain who uses a fancy DHTMB (doohickey-thingamabob) to vaporize an obstacle.

I enjoy fantasy for the same reason as everyone else, to be taken out of our world and go on a narrated tour of the fantastical. But magic should still have logical consistency, otherwise it’s impossible for me to get fully immersed in the story. Don’t get me wrong, I can still enjoy fantasy books without a strict magical system, but my enjoyment is of other things like the characters, the setting, and the writing style. In those books, I am indifferent to the magic; it doesn’t add anything for me. If all you need is a magic word and a wand to solve all your problems, I might be envious, but I won’t relate to the story. Writers that create a magical system complete with strengths and weaknesses, and explain what is possible and what is not, immerse me in the story much more effectively. In order to pretend magic is real, I must first understand it.

 

I am a huge fan of Brandon Sanderson, largely because of his originality, but also because of his firm grasp on what makes magic enjoyable and captivating. He has created a set of laws that can help writers create a believable magical system:

Magic is defined as soft or hard magic in Sanderson’s first law. This is much like soft or hard sci-fi. Soft magic does not follow any set of laws and can’t easily be predicted. It is mysterious and capable of almost anything. Hard magic is well-defined, and has logical limitations. I tend to think of soft magic as a background feature in a character driven story, something the author uses to nudge them in a certain direction or patch up any holes in the plot (my words, not Sanderson’s). Hard magic is integral to plot and setting, something the main character must understand and use wisely in order to overcome obstacles. Neither have to follow the laws of science, but one is more defined than the other.

The second law is a law of limitations, where magic has weaknesses and strengths, i.e. there should be a cost to using such power. By Sanderson’s estimation, the best magical systems have more limitations than power. This is another way to make a magical system logical, for there is no such thing as action without consequence, and no such thing as infinite power.

Another way to infuse logic into a magical system is to follow Sanderson’s third law. Sanderson tells us to think through the consequences of the magic we have created, to try to think of how it will affect the world. If everyone has the ability to fly, I’m pretty sure they won’t be driving cars to work in the morning, or waiting around in airports. If everyone lives forever, there will probably be strict rules on procreation to prevent overpopulation. There is nothing more jarring to a reader than a contradiction. Making the laws simple will also help limit confusion, and keep it from becoming a tangled mess.

Logical magical systems are something I have been striving to create in my own writing. The magic in Agony’s Fire is very simple, but it can be used in countless ways. It is based on a single premise, that in a place devoid of time, space, and matter, there is nothing to stop anything from coming into being. In this place, a simple possibility can make it a reality. However, nothing made in this Void can enter our reality unless it follows all of its laws. Therefore, the user must have a perfect understanding of what he/she is trying to create in order to bring it into existence. Because the human brain is so limited, my characters have only managed to create the simplest form of energy: heat. So far. But heat can’t be created from nothing. The energy used to create fire is pulled from the mind of the user, where the possibility and understanding of fire originated. Likewise, you can pull energy from the world into the Void, and to balance that loss, the energy is placed back into the individual’s mind. It is a magic that can be used in many creative ways, but one that is also limiting. They can heighten their emotions, senses, cognition (which I term the Agonies and Sanities) when drawing energy from the world to create cold, or they can give some of it up to create fire, hence the title Agony’s fire. Pull in too much energy from the world and they can have a seizure, but give too much energy to the world and they can lose consciousness, or worse, their sanity. This magic has also created a society of people who wish to learn, for only in understanding something completely will they be able to create it.

I would encourage you all to write down the laws of your magic and summarize them like I just did. If they are noticeably fickle laws, and they fall into the realm of soft magic, then perhaps there is a way to strengthen them. Sanderson’s laws are a great template to start from. But the logical consistency of magic and science is just a small part of what readers are looking for in a book, so if it becomes too monumental a task, make sure to focus your energies on good writing, powerful plots, and believable characters.